Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cell Rep Methods ; 4(4): 100728, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38492569

RESUMO

Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.


Assuntos
Receptores ErbB , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos
2.
EBioMedicine ; 96: 104788, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672867

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) and healthy controls received primary SARS-CoV-2-mRNA vaccination and a booster after six months. Anti-TNF-α-treated patients showed significantly lower antibody (Ab) levels and faster waning than α4ß7-integrin-antagonist recipients and controls. This prospective cohort study aimed to elucidate the underlying mechanisms on the basis of circulating T-follicular helper cells (cTfh) and B memory cells. METHODS: We measured SARS-CoV-2- Wuhan and Omicron specific Abs, B- and T-cell subsets at baseline and kinetics of Spike (S)-specific B memory cells along with distributions of activated cTfh subsets before and after primary and booster vaccination. FINDINGS: Lower and faster waning of Ab levels in anti-TNF-α treated IBD patients was associated with low numbers of total and naïve B cells vs. expanded plasmablasts prior to vaccination. Along with their low Ab levels against Wuhan and Omicron VOCs, reduced S-specific B memory cells were identified after the 2nd dose which declined to non-detectable after 6 months. In contrast, IBD patients with α4ß7-integrin-antagonists and controls mounted and retained high Ab levels after the 2nd dose, which was associated with a pronounced increase in S-specific B memory cells that were maintained or expanded up to 6 months. Booster vaccination led to a strong increase of Abs with neutralizing capacity and S-specific B memory cells in these groups, which was not the case in anti-TNF-α treated IBD patients. Of note, Ab levels and S-specific B memory cells in particular post-booster correlated with the activation of cTfh1 cells after primary vaccination. INTERPRETATIONS: The reduced magnitude, persistence and neutralization capacity of SARS-CoV-2 specific Abs after vaccination in anti-TNF-α-treated IBD patients were associated with impaired formation and maintenance of S-specific B memory cells, likely due to absent cTfh1 activation leading to extra-follicular immune responses and diminished B memory cell diversification. These observations have implications for patient-tailored vaccination schedules/vaccines in anti-TNF-α-treated patients, irrespective of their underlying disease. FUNDING: The study was funded by third party funding of the Institute of Specific Prophylaxis and Tropical Medicine at the Medical University Vienna. The funders had no role in study design, data collection, data analyses, interpretation, or writing of report.

3.
NPJ Vaccines ; 8(1): 101, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443366

RESUMO

Chemical cross-linking is used to stabilize protein structures with additional benefits of pathogen and toxin inactivation for vaccine use, but its use has been restricted by the potential for local or global structural distortion. This is of particular importance when the protein in question requires a high degree of structural conservation for inducing a biological outcome such as the elicitation of antibodies to conformationally sensitive epitopes. The HIV-1 envelope glycoprotein (Env) trimer is metastable and shifts between different conformational states, complicating its use as a vaccine antigen. Here we have used the hetero-bifunctional zero-length reagent 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimide (EDC) to cross-link two soluble Env trimers, selected well-folded trimer species using antibody affinity, and transferred this process to good manufacturing practice (GMP) for experimental medicine use. Cross-linking enhanced trimer stability to biophysical and enzyme attack. Cryo-EM analysis revealed that cross-linking retained the overall structure with root-mean-square deviations (RMSDs) between unmodified and cross-linked Env trimers of 0.4-0.5 Å. Despite this negligible distortion of global trimer structure, we identified individual inter-subunit, intra-subunit, and intra-protomer cross-links. Antigenicity and immunogenicity of the trimers were selectively modified by cross-linking, with cross-linked ConS retaining bnAb binding more consistently than ConM. Thus, the EDC cross-linking process improves trimer stability whilst maintaining protein folding, and is readily transferred to GMP, consistent with the more general use of this approach in protein-based vaccine design.

4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446069

RESUMO

CD19 is an essential protein in personalized CD19-targeting chimeric antigen receptor (CAR)-T cell-based cancer immunotherapies and CAR-T cell functionality evaluation. However, the recombinant expression of this "difficult to-express" (DTE) protein is challenging, and therefore, commercial access to the protein is limited. We have previously described the successful stable expression of our soluble CD19-AD2 fusion protein of the CD19 extracellular part fused with human serum albumin domain 2 (AD2) in CHO-K1 cells. The function, stability, and secretion rate of DTE proteins can be improved by culture conditions, such as reduced temperature and a shorter residence time. Moreover, glycosylation, as one of the most important post-translational modifications, represents a critical quality attribute potentially affecting CAR-T cell effector function and thus impacting therapy's success. In this study, we increased the production rate of CD19-AD2 by 3.5-fold through applying hypothermic culture conditions. We efficiently improved the purification of our his-tagged CD19-AD2 fusion protein via a Ni-NTA-based affinity column using a stepwise increase in the imidazole concentration. The binding affinity to commercially available anti-CD19 antibodies was evaluated via Bio-Layer Interferometry (BLI). Furthermore, we revealed glycosylation patterns via Electrospray Ionization Mass Spectrometry (ESI-MS), and five highly sialylated and multi-antennary N-glycosylation sites were identified. In summary, we optimized the CD19-AD2 production and purification process and were the first to characterize five highly complex N-glycosylation sites.


Assuntos
Neoplasias , Linfócitos T , Cricetinae , Animais , Humanos , Glicosilação , Cricetulus , Proteínas Recombinantes/genética , Imunoterapia Adotiva/métodos
5.
Front Bioeng Biotechnol ; 10: 816275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685087

RESUMO

Immunoglobulins type-M (IgMs) are one of the first antibody classes mobilized during immune responses against pathogens and tumor cells. Binding to specific target antigens enables the interaction with the C1 complex which strongly activates the classical complement pathway. This biological function is the basis for the huge therapeutic potential of IgMs. But, due to their high oligomeric complexity, in vitro production, biochemical characterization, and biophysical characterization are challenging. In this study, we present recombinant production of two IgM models (IgM617 and IgM012) in pentameric and hexameric states and the evaluation of their polymer distribution using different biophysical methods (analytical ultracentrifugation, size exclusion chromatography coupled to multi-angle laser light scattering, mass photometry, and transmission electron microscopy). Each IgM construct is defined by a specific expression and purification pattern with different sample quality. Nevertheless, both purified IgMs were able to activate complement in a C1q-dependent manner. More importantly, BioLayer Interferometry (BLI) was used for characterizing the kinetics of C1q binding to recombinant IgMs. We show that recombinant IgMs possess similar C1q-binding properties as IgMs purified from human plasma.

6.
Front Med (Lausanne) ; 9: 822316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242786

RESUMO

In a SARS-CoV-2 seroprevalence study conducted with 1,655 working adults in spring of 2020, 12 of the subjects presented with positive neutralization test (NT) titers (>1:10). They were here followed up for 1 year to assess their Ab persistence. We report that 7/12 individuals (58%) had NT_50 titers ≥1:50 and S1-specific IgG ≥50 BAU/ml 1 year after mild COVID-19 infection. S1-specific IgG were retained until a year when these levels were at least >60 BAU/ml at 3 months post-infection. For both the initial fast and subsequent slow decline phase of Abs, we observed a significant correlation between NT_50 titers and S1-specific IgG and thus propose S1-IgG of 60 BAU/ml 3 months post-infection as a potential threshold to predict neutralizing Ab persistence for 1 year. NT_50 titers and S1-specific IgG also correlated with circulating S1-specific memory B-cells. SARS-CoV-2-specific Ab levels after primary mRNA vaccination in healthy controls were higher (Geometric Mean Concentration [GMC] 3158 BAU/ml [CI 2592 to 3848]) than after mild COVID-19 infection (GMC 82 BAU/ml [CI 48 to 139]), but showed a stronger fold-decline within 5-6 months (0.20-fold, to GMC 619 BAU/ml [CI 479 to 801] vs. 0.56-fold, to GMC 46 BAU/ml [CI 26 to 82]). Of particular interest, the decline of both infection- and vaccine-induced Abs correlated with body mass index. Our data contribute to describe decline and persistence of SARS-CoV-2-specific Abs after infection and vaccination, yet the relevance of the maintained Ab levels for protection against infection and/or disease depends on the so far undefined correlate of protection.

7.
ACS Synth Biol ; 10(5): 1184-1198, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843201

RESUMO

CD19 is among the most relevant targets in cancer immunotherapy. However, its extracellular domain (ECD) is prone to aggregation and misfolding, representing a major obstacle for the development and analysis of CD19-targeted therapeutics. Here, we engineered stabilized CD19-ECD (termed SuperFolder) variants, which also showed improved expression rates and, in contrast to the wild type protein, they could be efficiently purified in their monomeric forms. Despite being considerably more stable, these engineered mutants largely preserved the wild type sequence (>98.8%). We demonstrate that the variant SF05 enabled the determination of the monovalent affinity between CD19 and a clinically approved FMC63-based CAR, as well as monitoring and phenotypic characterization of CD19-directed CAR-T cells in the blood of lymphoma patients. We anticipate that the SuperFolder mutants generated in this study will be highly valuable tools for a range of applications in basic immunology and CD19-targeted cancer immunotherapy.


Assuntos
Substituição de Aminoácidos , Antígenos CD19/genética , Evolução Molecular Direcionada/métodos , Imunoterapia Adotiva/métodos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Sequência de Aminoácidos , Aminoácidos/genética , Anticorpos Monoclonais/imunologia , Antígenos CD19/química , Antígenos CD19/imunologia , Células HEK293 , Humanos , Linfoma Difuso de Grandes Células B/sangue , Proteínas Mutantes , Mutação , Domínios Proteicos/imunologia , Dobramento de Proteína , Estabilidade Proteica , Receptores de Antígenos Quiméricos/genética
8.
Front Bioeng Biotechnol ; 9: 779359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976974

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. One of the three membrane-bound envelope proteins is the spike protein (S), the one responsible for docking to the cellular surface protein ACE2 enabling infection with SARS-CoV-2. Although the structure of the S-protein has distinct similarities to other viral envelope proteins, robust and straightforward protocols for recombinant expression and purification are not described in the literature. Therefore, most studies are done with truncated versions of the protein, like the receptor-binding domain. To learn more about the interaction of the virus with the ACE2 and other cell surface proteins, it is mandatory to provide recombinant spike protein in high structural quality and adequate quantity. Additional mutant variants will give new insights on virus assembly, infection mechanism, and therapeutic drug development. Here, we describe the development of a recombinant CHO cell line stably expressing the extracellular domain of a trimeric variant of the SARS CoV-2 spike protein and discuss significant parameters to be considered during the expression and purification process.

9.
Nat Immunol ; 21(8): 848-856, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632291

RESUMO

Rational design of chimeric antigen receptors (CARs) with optimized anticancer performance mandates detailed knowledge of how CARs engage tumor antigens and how antigen engagement triggers activation. We analyzed CAR-mediated antigen recognition via quantitative, single-molecule, live-cell imaging and found the sensitivity of CAR T cells toward antigen approximately 1,000-times reduced as compared to T cell antigen-receptor-mediated recognition of nominal peptide-major histocompatibility complexes. While CARs outperformed T cell antigen receptors with regard to antigen binding within the immunological synapse, proximal signaling was significantly attenuated due to inefficient recruitment of the tyrosine-protein kinase ZAP-70 to ligated CARs and its reduced concomitant activation and subsequent release. Our study exposes signaling deficiencies of state-of-the-art CAR designs, which presently limit the efficacy of CAR T cell therapies to target tumors with diminished antigen expression.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos Quiméricos/imunologia , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32117929

RESUMO

The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.

11.
PLoS One ; 15(3): e0229992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163462

RESUMO

Recombinant production of IgM antibodies poses a special challenge due to the complex structure of the proteins and their not yet fully elucidated interactions with the immune effector proteins, especially the complement system. In this study, we present transient expression of IgM antibodies (IgM617, IgM012 and IgM012_GL) in HEK cells and compared it to the well-established stable expression system in CHO cells. The presented workflow investigates quality attributes including productivity, polymer distribution, glycosylation, antibody structure and activation of the classical complement pathway. The HEK293E transient expression system is able to generate comparable amounts and polymer distribution as IgM stably produced in CHO. Although the glycan profile generated by HEK293E cells contained a lower degree of sialylation and a higher portion of oligomannose structures, the potency to activate the complement cascade was maintained. Electron microscopy also confirmed the structural integrity of IgM pentamers produced in HEK293E cells, since the conventional star-shaped structure is observed. From our studies, we conclude that the transient expression system provides an attractive alternative for rapid, efficient and high-throughput production of complex IgM antibodies with slightly altered post-translational modifications, but comparable structure and function.


Assuntos
Imunoglobulina M/metabolismo , Animais , Células CHO , Ativação do Complemento , Complemento C1q/química , Complemento C1q/metabolismo , Cricetinae , Cricetulus , Glicosilação , Células HEK293 , Humanos , Imunoglobulina M/química , Imunoglobulina M/genética , Microscopia Eletrônica de Transmissão , Oligossacarídeos/química , Plasmídeos/genética , Plasmídeos/metabolismo , Transfecção
12.
Methods Mol Biol ; 2095: 27-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31858461

RESUMO

Perfusion is considered as the preferable unit operation mode for fully integrated continuous bioprocessing. However, the inherent complex process control, long process development times, and lack of suitable scale-down models for high-throughput screening are reasons why perfusion processes are still not routinely applied in cell culture technology. Advantages of perfusion are maintenance of a consistent cellular environment, a constant high-quality product flow, enhanced volumetric bioreactor productivity, and small lab footprint. Here, we provide guidelines for screening different proprietary but commercially available HyClone™ Cell Boost™ supplements in a Design of Experiment (DoE) approach to spike the HyClone™ CDM4NS0 basal media for enhanced product titers in small-scale TubeSpin models. These surrogate semi-perfusion cultures were successfully realized by a daily complete media exchange routine resulting in high viable cell densities for extended time periods at minimal media consumption. This technique was leveraged to define the potential of different perfusion media formulations.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Perfusão/métodos , Animais , Reatores Biológicos , Células CHO , Contagem de Células , Cricetulus , Análise de Regressão , Software
13.
Methods Mol Biol ; 2095: 295-302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31858475

RESUMO

Immunoglobulin M (IgM) antibodies are considered as promising biopharmaceutical drugs in the future despite recombinant production is quite challenging as incomplete polymer formation or nucleic acid adherence can decrease the quality of the IgM preparation. Therefore, we defined densitometric and chromatographic methods as suitable tools to analyze the polymer distribution and the remaining nucleic acid content after initial IgM purification. Additionally, the quality of the glycosylation pattern is an important parameter for biological safety and efficacy.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Densitometria/métodos , Imunoglobulina M/análise , Animais , Biopolímeros/análise , Biopolímeros/química , Células CHO , Cricetulus , Glicosilação , Imunoglobulina M/química , Imunoglobulina M/isolamento & purificação , Ácidos Nucleicos/análise
14.
Biotechnol Prog ; 36(2): e2933, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680446

RESUMO

Perfusion cultivation of recombinant CHO cells is of substantial interest to the biopharmaceutical industry. This is due to increased space-time-yields (STYs) and a short residence time of the recombinant protein in the bioreactor. Economic processes rely on cultivation media supporting rapid growth in the exponential phase and high protein production in the stationary phase at minimal media consumption rates. To develop clone-specific, high-performing perfusion media we present a straightforward and rapid two-step approach combining commercially available basal media and feed supplements using design-of-experiment. First, the best performing feed supplements are selected in batch cultures. Then, the mixing ratio of selected feed supplements is optimized in small-scale semicontinuous perfusion cultures. The final media formulation is supported by statistical response surface modeling of a set of cultivation experiments with blended media formulations. Two best performing novel media blends were finally applied to perfusion bioreactor verification runs to reach 200 × 106 c/ml within 2 weeks at minimum cell-specific perfusion rates as low as 10-30 pL/c/d. Obtained STYs of 0.4-1.2 g/L/d represent a 10-fold increase compared to batch cultures. This general workflow is universally applicable to any perfusion platform combining a specific cell line, basal medium, and established feed solutions.


Assuntos
Meios de Cultura/farmacologia , Perfusão , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Células Cultivadas , Cricetulus , Meios de Cultura/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/efeitos dos fármacos , Análise de Regressão
15.
Appl Microbiol Biotechnol ; 103(18): 7505-7518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31350616

RESUMO

The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody's germline family, highlighting the fact that mAbs should be treated individually.


Assuntos
Anticorpos Monoclonais/genética , Mutação em Linhagem Germinativa , Proteínas Recombinantes/genética , Temperatura , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Cricetinae , Cricetulus , Mutação , Estabilidade Proteica , Proteínas Recombinantes/imunologia
16.
N Biotechnol ; 50: 20-26, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30630093

RESUMO

IgM antibodies are arousing considerable interest as biopharmaceuticals. Despite their immunotherapeutic potential, little is known about the impact of environmental conditions on product quantity and quality of these complex molecules. Process conditions influence the critical quality attributes (CQAs) of therapeutic proteins and thus are important parameters for biological safety and efficacy. Here, the results of a systematic study are presented that characterized the influence of temperature and pH on cell-specific productivity and IgM quality attributes. Biphasic temperature and pH shift experiments were performed as batch cultures in DASGIP® bioreactors under controlled conditions and defined by a specific design of experiment (DOE) approach. An internally-developed recombinant IgM producing CHO cell line was used. With respect to product quality, after an initial purification step efforts were focused on pentamer content, nucleic acid (NA) impurities and the glycosylation profile after an initial purification step. All quality attributes were evaluated by densitometric and chromatographic methods. The reduction of cultivation temperature severely reduced IgM titers, while pH variation had no impact. In contrast, IgM quality was not significantly influenced by bioprocessing parameters. Data revealed that an additional purification step is required to reduce the presence of NAs for in vivo applications. In conclusion, the results showed that for the chosen IgM model, IgM012_GL, variation in quality attributes is not caused by the environmental conditions of temperature and pH.


Assuntos
Imunoglobulina M/biossíntese , Temperatura , Animais , Células CHO , Cricetulus , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina M/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
17.
Hum Antibodies ; 27(1): 37-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30103312

RESUMO

Nomenclature of monoclonal antibodies traditionally followed a strict scheme indicating target and species information. Because of the rapid advances in this field, emphasized by approval of four humanized and six human antibodies in 2017, the International Nonproprietary Name of new antibodies was updated profoundly by removing the species substem completely. In this review we give an overview about what developments led to the preference of the scientific community towards human-like antibodies. We summarize the major updates in naming schemes that tried to classify antibodies according to their humanization technique or to the final primary sequence and how this led to the erroneous perception to indicate expected immunogenicity. Following the new 2017 nomenclature update, there will not be any information available about the species origin in the names of new antibodies, which emphasizes the need for providing additional supplemental information to the scientific community and develop tools to accurately estimate and control the safety of new monoclonal antibody molecules.


Assuntos
Anticorpos Monoclonais Humanizados/classificação , Terminologia como Assunto , Regiões Determinantes de Complementaridade/imunologia , Humanos , Engenharia de Proteínas
18.
Biotechnol J ; 14(3): e1700686, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29701329

RESUMO

Chinese hamster ovary (CHO) cells comprise a variety of lineages including CHO-DXB11, CHO-K1, CHO-DG44, and CHO-S. Despite all CHO cell lines sharing a common ancestor, extensive mutagenesis, and clonal selection has resulted in substantial genetic heterogeneity among them. Data from sequencing show that different genes are missing in individual CHO cell lines and each cell line harbors a unique set of mutations with relevance to the bioprocess. However, not much literature is available about the influence of genetic differences of CHO on the performance of bioprocess operations. In this study, the host cell-specific differences among three widely used CHO cell lines (CHO-K1, CHO-S, and CHO-DG44) and recombinantly expressed the same monoclonal antibody (mAb) in an isogenic format by using bacterial artificial chromosomes (BACs) as transfer vector in all cell lines is examined. Cell-specific growth and product formation are studied in batch, fed-batch, and semi-continuous perfusion cultures. Further, two different cell culture media are used to investigate their effects. The authors find CHO cell line-specific preferences for mAb production or biomass synthesis that are determined by the host cell line. Additionally, quality attributes of the expressed mAb are influenced by the host cell line and media.


Assuntos
Anticorpos Monoclonais/genética , Técnicas de Cultura de Células/métodos , Animais , Biomassa , Células CHO , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Cricetulus
19.
Bioconjug Chem ; 30(1): 70-82, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30525492

RESUMO

Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the ß-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.


Assuntos
Adipatos/química , Epitopos/química , Glicoconjugados/química , Anticorpos Anti-HIV/imunologia , Manose/química , Tioureia/química , Amidas/química , Sequência de Carboidratos , Química Click , Dendrímeros/química , Glicoconjugados/síntese química , Anticorpos Anti-HIV/química
20.
J Biotechnol ; 285: 23-37, 2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30157452

RESUMO

Feed supplements are concentrated cell culture media that contain a variety of nutrients, which can be added during a bioprocess. During fed-batch cultivation, feed media are typically added to a growing cell culture to maximize cell and product concentrations. In this study, only a single shot of feed medium was added on day 0 to a basal cell culture medium and compared to non-supplemented basal medium (feed-spiked at day 0 versus control experiments) by cultivation of a recombinant mAb expressing CHO cell line in batch mode under controlled conditions in a bioreactor. Since the feed-spike at day 0 was based on existing medium components without introducing additional supplements, a desirable process with decreased complexity was generated. Unlike cells in basal medium, feed-spiked cultures reached almost 2× higher peak cell concentrations (10 × 106 c/mL vs. 18 × 106 c/mL) and 3× higher antibody concentrations (0.8 g/L vs. 2.4 g/L). Batch process time and the integral over the viable cell count were similar for both process types. Constantly high cell-specific production rates in feed-spiked cultures (70 pg/cell/day) compared to continuously declining rates in basal medium (from 70 to 10 pg/cell/day) were responsible for an overall 70% higher cell-specific production rate and the higher product concentrations. To associate gene expression patterns to different process proceedings, transcriptome analysis was performed using microarrays. Several transcripts that are involved with glutamine de novo synthesis and citric acid cycle were significantly upregulated on several days in feed-spiked cultures. The top identified gene ontology (GO) terms related well to cell cycle and primary metabolism, cellular division as well as nucleobase formation or regulation, which indicated a more active proliferative state for feed-spiked cultures. KEGG biochemical pathway analysis and Gene set enrichment analysis (GSEA) further confirmed these findings from a complementary perspective. Moreover, several interesting gene targets, which have not yet been associated with recombinant protein expression, were identified that related to a higher proliferative state, growth, protein synthesis, cell-size control, metabolism, cell survival as well as genes that are associated with the control of the mammalian target of rapamycin (mTOR) in feed-spiked cultures. Analysis of critical product quality attributes (i.e. glycosylation, charge variants and size distribution) showed that feed-spiking did not change antibody quality.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Expressão Gênica/efeitos dos fármacos , Animais , Reatores Biológicos , Células CHO , Cricetulus , Proteínas Recombinantes/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA